Scalable System Architecture for a High-Traffic Sports Highlight Platform
✅ 1. 스포츠중계 FRONTEND SCALABILITY
Use a Static Site Generator (SSG) where possible
-
If you're using Next.js, use Incremental Static Regeneration (ISR)
→ This allows pre-rendering of pages (like highlight pages) and updating them in the background every X minutes.
CDN all the things
-
Host with Vercel, Netlify, or Cloudflare Pages
-
Use Cloudflare CDN or Fastly to cache static content and even partial dynamic content (edge caching)
???? Tip: Cache highlight thumbnails and embed previews aggressively.
✅ 2. BACKEND + API LAYER
Go Serverless or Autoscaling
-
Option A: Serverless
-
Use AWS Lambda, Google Cloud Functions, or Vercel Functions
-
Scales on demand with zero warm-up issues for lightweight APIs
-
-
Option B: Containerized API with Autoscaling
-
Dockerize your FastAPI or Node.js backend
-
Deploy via Google Cloud Run, AWS ECS with Fargate, or Kubernetes (EKS/GKE)
-
???? Tip: Break your backend into microservices if you're pulling from multiple APIs (YouTube, ScoreBat, etc.)
✅ 3. DATABASE OPTIMIZATION
Choose a scalable, managed DB:
-
PostgreSQL via Supabase, Neon, or PlanetScale (MySQL)
-
Use read replicas to separate read-heavy traffic
-
Add indexes on fields like
team
,league
,upload_date
,video_id
Use a caching layer
-
Add Redis to store recent highlight metadata or most-viewed videos
-
Use it for your leaderboard, “Trending Now,” or homepage highlights
✅ 4. MEDIA +스포츠중계 VIDEO HANDLING
Don’t self-host videos
-
Always embed via YouTube or store videos in Amazon S3 / Cloudflare R2
-
Use Cloudinary or Imgix to optimize and CDN thumbnails/images
Lazy-load video players
-
Load video embeds only when visible or hovered
-
Use
react-lazyload
or similar libraries to avoid DOM overload
✅ 5. REAL-TIME + NOTIFICATIONS
-
For real-time updates (e.g., new highlight posted):
-
Use WebSockets (via Socket.io or Pusher) only for logged-in users
-
Offload public traffic using Server-Sent Events (SSE) or periodic polling
-
-
For mobile/web push:
-
Use Firebase Cloud Messaging (FCM) for scalable, reliable delivery
-
✅ 6. LOGGING + MONITORING
Don’t scale blindly—monitor everything:
-
Logs: Datadog, LogRocket, or ELK Stack
-
Uptime / Alerts: UptimeRobot, Pingdom
-
Errors / Crashes: Sentry
-
Performance: Lighthouse CI, New Relic
✅ 7. DATABASE SCHEMA DESIGN FOR SCALE
Table | Key Fields | Purpose |
---|---|---|
videos |
id , title , league_id , team_ids , views |
Stores all highlights |
teams |
id , name , league_id |
Reference for filtering/search |
leagues |
id , name , region |
Categorize highlights |
views |
video_id , timestamp , user_id (optional) |
Analytics + trending |
Use foreign keys and indexes to keep queries fast.
????️ PRODUCTION-READY STACK SUMMARY
스포츠중계 | Scalable Tech Choices |
---|---|
Frontend | Next.js + ISR + CDN (Cloudflare, Vercel) |
Backend | Serverless (Lambda) or Containerized (Cloud Run) |
Database | PostgreSQL + Redis + Read Replicas |
Storage | S3 / Cloudinary / Cloudflare R2 |
Notifications | Firebase FCM, WebSockets (Socket.io), Pusher |
Monitoring | Sentry + Datadog + LogRocket |
???? Bonus Tips
-
Use Queue Systems (RabbitMQ, BullMQ) for background jobs like syncing new videos
-
Rate-limit APIs if you're public-facing
-
Use GraphQL if your frontend demands flexible querying patterns
Comments on “Scalable System Architecture for a High-Traffic Sports Highlight Platform”