Scalable System Architecture for a High-Traffic Sports Highlight Platform

Scalable System Architecture for a High-Traffic Sports Highlight Platform


1. 스포츠중계 FRONTEND SCALABILITY

Use a Static Site Generator (SSG) where possible

  • If you're using Next.js, use Incremental Static Regeneration (ISR)
    → This allows pre-rendering of pages (like highlight pages) and updating them in the background every X minutes.

CDN all the things

  • Host with Vercel, Netlify, or Cloudflare Pages

  • Use Cloudflare CDN or Fastly to cache static content and even partial dynamic content (edge caching)

???? Tip: Cache highlight thumbnails and embed previews aggressively.


2. BACKEND + API LAYER

Go Serverless or Autoscaling

  • Option A: Serverless

    • Use AWS Lambda, Google Cloud Functions, or Vercel Functions

    • Scales on demand with zero warm-up issues for lightweight APIs

  • Option B: Containerized API with Autoscaling

    • Dockerize your FastAPI or Node.js backend

    • Deploy via Google Cloud Run, AWS ECS with Fargate, or Kubernetes (EKS/GKE)

???? Tip: Break your backend into microservices if you're pulling from multiple APIs (YouTube, ScoreBat, etc.)


3. DATABASE OPTIMIZATION

Choose a scalable, managed DB:

  • PostgreSQL via Supabase, Neon, or PlanetScale (MySQL)

  • Use read replicas to separate read-heavy traffic

  • Add indexes on fields like team, league, upload_date, video_id

Use a caching layer

  • Add Redis to store recent highlight metadata or most-viewed videos

  • Use it for your leaderboard, “Trending Now,” or homepage highlights


4. MEDIA +스포츠중계 VIDEO HANDLING

Don’t self-host videos

  • Always embed via YouTube or store videos in Amazon S3 / Cloudflare R2

  • Use Cloudinary or Imgix to optimize and CDN thumbnails/images

Lazy-load video players

  • Load video embeds only when visible or hovered

  • Use react-lazyload or similar libraries to avoid DOM overload


5. REAL-TIME + NOTIFICATIONS

  • For real-time updates (e.g., new highlight posted):

    • Use WebSockets (via Socket.io or Pusher) only for logged-in users

    • Offload public traffic using Server-Sent Events (SSE) or periodic polling

  • For mobile/web push:

    • Use Firebase Cloud Messaging (FCM) for scalable, reliable delivery


6. LOGGING + MONITORING

Don’t scale blindly—monitor everything:

  • Logs: Datadog, LogRocket, or ELK Stack

  • Uptime / Alerts: UptimeRobot, Pingdom

  • Errors / Crashes: Sentry

  • Performance: Lighthouse CI, New Relic


7. DATABASE SCHEMA DESIGN FOR SCALE

Table Key Fields Purpose
videos id, title, league_id, team_ids, views Stores all highlights
teams id, name, league_id Reference for filtering/search
leagues id, name, region Categorize highlights
views video_id, timestamp, user_id (optional) Analytics + trending

Use foreign keys and indexes to keep queries fast.


????️ PRODUCTION-READY STACK SUMMARY

스포츠중계 Scalable Tech Choices
Frontend Next.js + ISR + CDN (Cloudflare, Vercel)
Backend Serverless (Lambda) or Containerized (Cloud Run)
Database PostgreSQL + Redis + Read Replicas
Storage S3 / Cloudinary / Cloudflare R2
Notifications Firebase FCM, WebSockets (Socket.io), Pusher
Monitoring Sentry + Datadog + LogRocket

???? Bonus Tips

  • Use Queue Systems (RabbitMQ, BullMQ) for background jobs like syncing new videos

  • Rate-limit APIs if you're public-facing

  • Use GraphQL if your frontend demands flexible querying patterns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Comments on “Scalable System Architecture for a High-Traffic Sports Highlight Platform”

Leave a Reply

Gravatar